September/October. 1992
Volume 3, Number 5
A% ¢ Bringing you the latest news and
information from Silicon Graphics’
- Customer Support resources.

Table of Contents
1 Vizualizing Transformations and
Projections - A Right Brain
Approach
Handling Colormaps in Mixed
Model Applications
8 Q&A
s 8 10 InfoAccess
' INSERT: Customer Support Guide

- - o « ® =
.. . .'
L » -

Tig 8 % .
.,‘ - = =

Pl

i T .& 3 : - 2
[B . -

¥ - = - .

A _‘f 1000000.0.?
2 4

Vizualizing Transformations and Projections - A Right
Brain Approach

he matrix projections and transformations in the RS 7
graphics library provide enough flexibility for most people,
but some developers require non-standard matrix
operations, and need to know more about the mathematics,
which turns out to be (real) projective geometry. 2
The calculations are simple, but may appear mysterious
or even somewhat magical the first time through. You
might ask, “Why do we need the ‘w’ coordinate?”, or
“How was the formula for perspective derived and why
does it work?” A complete de-mystification requires both a
knowledge of the calculations (a left-brain task), and some
good geometric mental images for your right brain. This
article relates the calculations to a good mental model of
projective geometry.
With a clear mental picture, it's not hard to answer
questions such as: .
Is there any way to discover the location of the viewing-
position after transforming the scene with a matrix?
Why are my pictures so horrible when I set my near
clipping plane to 0.0000001 and my far clipping plane to

How do I build a rotation matrix about an arbitrary axis?

How do I do a shearing transformation?

What's the formula for a transformation that does 2-point

(continued on next page)

Visualizing Transformations...
(continued from previous page)

perspective (the GL perspective () command is 3-

point perspective)?

Homogeneous Coordinates and Projective Geometry

Projective geometry is not the same as Euclidean
geometry, but it is closely related. This article considers 2
and 3 dimensional projective geometry. Since (as in

Euclidean geometry) it’s easier to visualize and draw things

Two postulates from 2D Euclidean geometry:
-Every two points lie on a line.
-Every two lines lie on a point, unless
the lines are parallel, in which case,
they don't.

In 2D projective geometry, the postulates are

replaced by:

-Every two points lie on a line.
-Every two lines lie on a point. (In other
words, there are no parallel lines in
projective geometry.)

in 2 dimensions, we’ll begin with 2D projective geometry.
How can we visualize a 2D projective geometry model?
The model must describe all the points and lines, what
points are on what lines, etc. The easiest way is to take the
points and lines from a standard 2D Euclidean plane and
add elements until the projective postulates are satisfied.
The first problem is that the Euclidean parallel lines don’t
meet. Lines that are almost parallel meet way out in the
direction of the lines, so for parallel lines, add a single
point for each possible direction and add it to all the
parallel lines going that way. You can think of these points
as being points at infinity—at the “ends” of the lines. Note
that each line includes a single point at infinity—the north-

south line doesn’t have both a north and south point at

infinity. If you “go to infinity” to the north and keep going,
you will find yourself looping around from the south.
Projective lines form loops.

Now take all the new points at infinity and add a single
line at infinity going through all of them. It. too, forms a
loop that can be imagined to wrap around the whole
original Euclidean plane. These points and lines make up
the projective plane.

You might form a mental picture like the one shown in
figure 1. The solid circle around the outside is the line at
infinity, and it is beyond all the points on the Euclidean
plane (shown with a fuzzy edge). The points labelled L.,
are on the line L, and represent the same point.

Check the postulates. Two points in the Euclidean plane
still determine a single projective line. One point in the
plane and a point at infinity determine the projective line
through the point and going in the given direction. Finally,
the line at infinity passes through any two points at infinity.

How about lines? Two non-parallel lines in the Euclidean
plane still meet in a point, and parallel lines have the same
direction, so meet at the point at infinity in that direction.
Every line on the original plane meets the line at infinity at
the point at infinity corresponding to the line’s direction.

Note: The projective postulates do not distinguish

Euclidean plane

figure 1

between points and lines in the sense that if you saw them
written in a foreign language:

Every two glorphs lie on a smynx,

Every two smynxes lie on a glorph,
there would be no way to figure out whether a smynx is a
line and a glorph is a point or vice-versa. If you take any
theorem in 2D projective geometry and replace “point”
with “line” and “line” with “point”, it makes a new theorem
that is also true. This is called “duality”—see any text on
projective geometry.

So we’ve got a nice mental picture—how do we assign
coordinates and calculate with it? The answer is that every
triple of real numbers [x, y, w] except [0.0, 0.0, 0.0]
corresponds to a projective point. If “w” is non-zero,

[x, y, w] corresponds to the point [x/w, y/w] in the original
Euclidean plane; [x, y, 0.0] corresponds to the point at
infinity corresponding to the direction of the line passing
through [0.0, 0.0] and [X, y]. Generally, if o is any non-zero
number, the homogeneous coordinates [x, y, w] and

[ox, oy, ow] represent the same point.

It’s a bit disturbing that the same projective point can be
represented in many different ways. For example, [1,2,1],
[2,4,2], and [-11,-22,-11] all refer to the Euclidean point
[1,2]. But don’t panic, you saw the same kind of thing in
third grade — the fractions 1/2, 2/4, and 55/110 all
represent the same number. Just as we usually use the
fraction reduced to lowest terms, we usually use projective
coordinates with w equal to 1.0 when that’s possible.

Since projective points and lines are in some sense
indistinguishable, it had better be possible to give line
coordinates as sets of three numbers (with at least one non-
zero). If the points are row vectors (as in the GL), the lines
will be column vectors (written with a “T” exponent that
represents “transpose”), so [a, b, c¢]” represents a line. The
point P = [x, y, w] lies on the line L = [a, b, c]" if ax+by+cw
= 0. In the Euclidean plane, the point [x, y] can be written

in projective coordinates as [X, y, 1.0], so the condition

becomes ax+by+c=0 — high-school algebra’s equation for
a line. The line passing through all the points at infinity has
coordinates [0.0, 0.0, 1.0]". As with points, for any non-
zero o, the linecoordinates [a, b, ¢]" and

[oa, ab, oc]” represent the same line. In matrix notation,
the point P lies on the line L if and only if PL=0. Choosing
to represent lines as column vectors and points as row
vectors, would work as well. It has to work because points

and lines are dual concepts.

Projective Transformations

Projective transformations transform (projective) points to
points and (projective) lines to lines such that incidence is
preserved. Thus, if T is a projective transformation and
points P and Q lie on line L then T(P) and T(Q) lie on T(L).
Similarly, if lines L. and M meet at point P, then the lines
T(L) and T(M) meet at the point T(P).

The reason projective transformations are so interesting is
that if we use the model of the projective plane described
above where we’ve simply added some elements to the
Euclidean plane, the projective transformations restriced to
the Euclidean plane include all rotations, translations, non-
zero scales, and shearing operations. This would be
powerful enough, but if we don’t restrict the
transformations to the Euclidean plane, the projective
transformations also include the standard projections,
including the very important perspective projection.

Rotation, translation, scaling, shearing (and all
combinations thereof) map the line at infinity to itself,
although the points on that line may be mapped to other
points at infinity. For example, a rotation of 20 degrees
maps each point at infinity corresponding to a direction to
the point corresponding to the direction rotated 20 degrees
(see figure 2). Pure translations preserve the directions, so a
translation maps each point at infinity to itself.

The standard perspective transformation (with a 90 degree

(continued on page 6)

Handling Colormaps in Mixed Model Applications

The following is a collection of do’s, don’ts and tips for
mixed model programming with respect to colormaps. A
sample program is provided at the end of the article which
uses a custom colormap for the normal buffer and a
separate custom colormap for the overlay/popup buffer.

The program utilizes the GL widget.

The Basics

1. When dealing with colormaps for mixed model
applications remember that it is the X Window System
policies and function calls which are pertinent. Any similar
GL functionality is not legal. An example of this would be
the use of mapcolor.

2. All mixed model programs, even those using RGB
mode for the normal buffer, need to call
XSetWMColormapWindows. This function will identify
windows that need to have colormaps installed by the
window manager (through the use of the
WM_COLORMAP_WINDOWS property). Calling this
routine is necessary for RGB mode because some Silicon
Graphics platforms implement the TrueColor visual
through the use of colormaps. See the
install_colormaps () function in the following cmapov.c
program for a general routine to perform this operation for
a single GL widget.

The xprop program (in /usr/bin/X11) can be used to verify
that the windows are contained in the appropriate property.
Part of the output should look something like this: ‘
WM_COLORMAP_WINDOWS (WINDOW) : window id #

88080402, 0x5400011, 0x540000e

Here three windows have been added. The first window id
is mentioned in decimal and the rest are in hexadecimal.
The windows are given in priority order, with the first
window receiving the highest priority to have its colormap
installed into the hardware map.

An application is not limited to calling

XSetWMColormapWindows just once. Whenever this

function is called, the property will be updated. If the client
has focus, the window manager will reexamine the new list
and perform colormap installation. Knowing this, it would
be possible for a client to contain multiple GL widgets,
each with a different colormap. The correct one could be
installed by monitoring EnterNotify and LeaveNotify
events for the windows of the GL widgets. Some
translations for these new events to an appropriate callback
function, for example, glxInput, would be needed in this
scheme.

There are also window manager functions to cycle
through the entries on this list, causing each window’s
colormap installation priority to change. These functions
are f.next_cmap and f.prev_cmap. Modifying the
window manager initialization file (4Dwmrc) will allow
access to them. There is no standard way to add the
functions; one possible way would be to add the following
lines to the 4DwmKeyBindings:

for colormap cycling

Ctrl<Key>F1

Ctrl<Key>F2

Note that this removes the ability of any application to use

window f.next_cmap

window f.prev_cmap
Ctrl+F1 or Ctrl+F2 for any other purpose (which could be
highly undesirable).

3. The default mixed model GL colormaps should not be
modified. If custom colors are needed then new colormaps
should be created, modified to the desired mapping, and
finally used for the GL rendering area, be it an X window
or a GL widget.

In order to create a colormap you need 3 basic pieces of
information: the display, any window on the screen for
which the colormap will be needed (the root window is
fine) and the visual with which the colormap will be used.
The display and root window are easy to obtain. The visual
used for GL rendering in a mixed model application is
obtained differently depending on the level at which you
are working with respect to X/Motif.

At the Xlib level the visual can be obtained anytime after
the call to GLXgetconfig(3G) is done. Visuals are
associated with GLXconfig entries that have a mode of
crx_visuaL. Typically some routines which linearly search
through a GLXconfig array are useful for setting and
getting values like this. Once the visual is found, a new
colormap can be created using XCreateColormap. It should
then be passed as an attribute to the window during the
window’s creation via the XSetWindowAttributes
mechanism. (see ~4Dgifts/examples/GLX/gl-Xlib for
examples of this process).

At the Toolkit/Motif level the visual can be obtained
anytime after the GL widget has been created. The visual
for the normal buffer is stored in the standard resource
XmNvisual. The visuals for the other buffers are stored in
GL widget-specific resources (GlxNoverlay Visual,
GlxNpopopVisual, GlxNunderlayVisual). Once the visual
has been obtained, the colormap can be created using
XCreateColormap. The new colormap should then be
passed to the GL widget using XtSetValues, overriding its
default colormap setting. Note that modifying the colormap
of a GL widget after it is created is allowable due to its
unique design; standard Motif widgets should not receive a
new colormap after creation.

4. When a new colormap is going to be installed by the
window manager only those cells in the new colormap
which have been allocated and changed are installed. Thus
colormap installation is not an "all-or-nothing" process.
You might have a colormap for a 4096 color PseudoColor
visual with only 3 colors allocated. In this case, for a real
estate driven focus policy, when the mouse cursor travels
into the client only 3 hardware colormap entries need to be
changed — the rest are left to what-they were prior to the
cursor entering the client’s window.

5. If custom colormaps are created an application should
choose to reduce colormap flashing in general, and in

particular for the normal buffer.

Colormap flashing occurs when a virtual colormap is
installed into the hardware colormap causing colors to
suddenly be interpreted to different RGB values. The most
bothersome flashing typically occurs when values at the
“low end” of the hardware colormap are changed. This is
due to the fact that the colors at low indices are used more
commonly for entities across the whole screen (such as
window frames and WorkSpace colors). “Bothersome” is
used very loosely here; it can happen at high indices as
well.

Clients needing their own virtual colormap can create one
using the XCreateColormap function. There are, then, two
cases to examine with respect to colormap flashing: the
AllocAll case and the AllocNone case (taken from the final

parameter passed to XCreateColormap).

A. AllocAll:

In this case every color cell in the colormap has been
allocated with read/write permission. This gives the
application the flexibility to modify all of its colors at any
time. The initial values of the cells in the virtual colormap
are undefined. In this state they will not be loaded when the
colormap is installed by the window manager.

The “lazy” method of reducing colormap flashing in this
case is to simply place client specific colors at the far end
of the colormap and allow all other colors to stay at
whatever they were prior to having your colormap
installed. Flashing will be minimized with fewer colors
changing. If your client ever uses any of these “default”
colors there could be problems though. The client may be
displayed in false colors due to a transition from an
application with a non-default colormap to your client.

The “minimalist” method then to avoid flashing and
display correct colors in this instance would be to have the
application copy the specific colors it uses from the default
X colormap to its virtual colormap (and place its unique

(continued on page 9)

Visualizing Transformations...
(continued from page 3)

field of view, the eye at the origin, and looking down the y-
axis) maps the origin to the point at infinity in the y-
direction. The viewing trapezoid maps to a square (see

figure 3).

rotation

figure 2

Every non-singular 3x3 matrix (non-singular means that
the matrix has an inverse) represents a projective
transformation, and every projective transformation is
represented by a non-singular 3x3 matrix. If M is such a
transformation matrix and P is a projective PM is the
transformed point. If L is a line, M''L represents the

transformed line. It’s easy to see why this works: if P lies

Perspective

figure 3

onL, PL=0, so PMM'L =0, so (PM)(M'L) = 0. The
matrix representation is not unique — as with points and
lines, any constant multiple of a matrix represents the same
projective transformation.

Combinations of transformations are represented by
products of matrices; a rotation represented by matrix R
followed by a translation (matrix T) is represented by the
matrix RT. A (2D) projective transformation is completely
determined if you know the images of 4 independent points
(or 4 independent lines). This is easy to see, as a 3x3 matrix
has nine numbers in it, but since any constant multiple
represents the same transformation, there are basically 8
degrees of freedom. Each point transformation that you
lock down eliminates 2 degrees of freedom, so the images
of 4 points completely determine the transformation.

Let’s look at a simple example of how this can be used by
deriving from scratch the rotation matrix for a 45 degree
rotation about the origin. The origin maps to itself, the
points at infinity along the x and y axes map to points at
infinity rotated 45 degrees, and the point [1, 1] maps to
[0, v 2]. See figure 4.

If R is the unknown matrix:

[0,0, 1IR =ki[0, 0, 1]
[1,0,0R =k:[v 2, ¥2,0]
[0, 1, 0R = ks[-v' 2, ¥ 2, 0]
[1 1, 11R =kf0, v 2, 1]
The ki, ..., ks can be any

constants since any
multiple of a projective

point’s coordinates

represents the same
B projective point. M has

basically 8 unknowns, so

those 8 plus the 4 ki's
make 12. Each matrix
equation represents 3

equations, so there is a

eye'

W

system of 12 equations and 12 unknowns that can be
solved. The computations may be cumbersome, but it’s a
straight-forward brute-force solution that gives the rotation
matrix as any multiple of:
R=[¥22 V22 0]
(V222 v22 0]
[O 0 1]

There’s nothing special about rotation. Every projective
transformation matrix can be determined in the same brute-
force manner starting from the images of 4 independent
points.

We illustrate with the

C

determination of the (2D)
perspective transformation
(see figure 3). We want to
map the shaded trapezoidal

area into the square with

corners [-1,-1] and [1, 1].

The unknown projection

must satisfy:
[0,0,1]P =ki[0, 1, 0]
[0, n, 1TP = k[0, -1, 1]
[f, f, 11P = ks[-1, 1, 1]
[1,0,0]P =k1,0, 0]
The same brute-force calculation gives the matrix P as
(any multiple of):
P=11 0 0]
[0 -(f+n)/(f-n) -1]
[0 2fn/(fn) O]

Three Dimensional Projective Space

3D projective space has a similar model. Take 3D
Euclidean space, add points at infinity in every 3-
dimensional direction, and add a plane at infinity going
through the points. In this case there will also be an infinite
number of lines at infinity as well. In 3D, points and planes

are dual objects.

Projective transformations in 3 dimensions are exactly
analogous.

Points are represented by 4-tuple row vectors: [X, ¥, z, W],
and planes by column vectors: [a, b, c, cl]T. Any multiple of
a point’s coordinates represents the same projective point.
A point P lies on a plane M if PM = 0. All 3D projective
transformations are represented by 4x4 non-singular
matrices.

In 3 dimensions, the images of 5 points (or planes)
completely determine a projective transformation. (A 4x4

matrix has 16 numbers, but 15 degrees of freedom because

figure 4

any multiple represents the same transformation. Each
point transformation that you nail down eliminates 3
degrees of freedom, so the images of 5 independent points
completely determine the transformation.)

The brute-force solution has 20 equations and 20
unknowns (there will be 5 ki’s in addition to the 15
unknowns), and although the solution is time-consuming, it
is straight-forward.

The calculation can be simplified. Suppose you want a

transformation that takes Pi to Qi ..., and Ps to Qs. Let

L=[1,0,0,0]
L=[0,1,0,0]
L=[0,0,1,0]

(continued on next page)

Visualizing Transformations. . .
(continued from previous page)

L=1[0,0,0,1]

=[1,1,1,1]
find the transformation P that takes P: to I: and the
transformation Q that takes Q: to L.. Because of all the
zeroes, these are much easier to work out. The

1
transformation you want is PQ .

Using the Mental Model

To review the questions from the first section —

Perspective projections map the eye point to infinity, so if

you know the projection matrix and want to find the eye
point, find the point that maps via the projection to infinity
in the z-direction.

If you’re wondering about the bizarre effects of widely .
spaced near and far clipping planes, look at how much
stretching occurs between the origin and .0000001.

Construction of the three projections is simply a matter of
listing 5 independent points and their images and
calculating the matrix by brute force.

The more ways you have to look at a mathematical
concept, the better you will understand it. Perhaps the

mental images here may provide additional insight.

Q: Is there a control sequence or a
way to change the xwsh background
after I’ve started up the window?

A2 See the section under "DCS Pn y
. Ps ST" in the ESCAPE SEQUENCES of the man page

for xwsh(1G). You may want to use command 5. DCS is
<ESC P>or \033p. Pnis 5 ".y"is ".y". "Ps" is the color
| string (e.g. gray50). STis <ESC \>or \033\\.
For example, the following command:
echo "\033P5.ygray50\033\\"
: will set the background to gray50. And:
echo "\033P5.ymidnightblue\033\\"

will set the background to midnightblue.

Q: Is it true that SGI machines are smart enough not to
send out packets across the network when two processes
are communicating on the same workstation? Does IRIX
4.0.1 work this way?

A: Most systems do not send network data out over the
media when the two end-points are on a single system.
For example,

rcp localhost:/etc/hosts localhost:/tmp

involves about 6 TCP/IP virtual circuits, 3 copies of rcp,
2 of rsh, and 2 of rshd, but none of the data will ever
touch the token ring, FDDI, or ethernet on an IRIS.

This is because SGI machines are unable to transmit and
receive at the same time on ethernet, and because it is too
unreliable and slow to talk to yourself over FDDI and
token ring. Sometimes the machine can receive its own
FDDI or token ring transmissions and sometimes it
cannot, depending on the size of the ring and other
uncontrollable factors.

A consequence of this policy is often unnoticed.
pinging the broadcast address produces an answer even
when the ethernet or other network hardware is broken.
This is because broadcasts and multicasts are detected in
the transmit code, and looped back in software. To see a
tool that is used to tune systems and make them faster, try
the following commands;

In one window, type:

ttcp -r -s -132768

In another window, enter;

ttep -t -s =132768 localhost

Note: The name localhost can be replaced by any name

(continued on page 12)

Handling Colormaps...
(continued from page 5)

colors up high). The colors which are copied are replicated
by position and RGB value. This is demonstrated in the
4Dgifts example: ~4Dgifts/examples/GLX/glxwidget/
demos/mscrn_rotate_btn.c in unison with copycmap. [ch]
(in the same directory).

A “peace-of-mind” method would be to copy an entire
block of lower colors from the default map to the virtual
map (whether or not they are used). The cmapov.c code
provided below demonstrates this method. It attempts to
replicate the first 256 default X colors (if there are that
many) in its colormap, and begins placing the custom
colors starting at the high end of the new colormap and
working backwards towards lower indices. Obviously if
there are 256 (or less) colors available then this allocation
process begins overwriting the default colors with custom
colors.

Note that these methods do not eliminate colormap
flashing; they only attempt to reduce it. Also, do not
confuse this copying of colors with color sharing. Sharing
takes place when multiple applications attempt to agree
where colors will be in a given colormap which they will
use. The methods above are for a custom colormap which

is in effect “emulating” another (default) colormap.

B. AllocNone

In this case no color cells are allocated in the colormap.
The client may choose to allocate either read or read/write
color cells at this point. As well, the client may choose to
leave some cells unallocated. Initially the cells have no
definition.

In terms of needing a custom colormap and reducing
colormap flashing this (the AllocNone case) is not the most
logical method to use. The allocation routines available will
not allow an application to place its colors at specific

indices which inhibits emulating the color values of the

default colormap. Color placement can be controlled if the
client attempts to allocate all the cells in the colormap after
creating it, but this basically reduces this method to the
AllocAll case.

The only extra ability gained then is that you can obtain a
custom colormap whose cells are all allocated read-only.
This doesn’t serve any real purpose though, unless this
custom colormap will be shared by multiple applications.

On systems with only 8 bitplanes, 1 hardware colormap,
and using double buffering for the normal buffer, it will be
difficult to avoid flashing if custom colors are desired. This
is because only 16 colors will be available for the two 4-bit
colormapped buffers which are created. Thus when a
program attempts to place its custom colors “at the high
end of the colormap”, they are really modifying colors with
“very low indices” (13, 14, 15, for example). The 8 bit
Personal Iris is most prone to this. The starter Indigo
(which is also an 8 bit machine) can usually avoid this
problem by relying on its multiple hardware colormaps.

6. The showmap and xshowcmap commands can be
useful in debugging colormap setups. They are less useful
on machines with more than one hardware colormap, and
not useful at all for debugging colormaps for buffers other

than the normal buffer.

Use of the Overlay Buffer

1. Some machines do not have overlay planes. In this case
you can attempt to use the popup planes. The getgdesc GL
function allows a program to check for this situation. Also,
the two buffers are not completely inter-changeable
because you will have at most 2 popup planes, but you may
have more than 2 overlay planes.

2. Overlays always run in colormap mode for Silicon
Graphic’s current systems.

3. Although VGX (and VGX alone) supports double
buffered overlays within pure GL applications, it does not

(continued on next page)

Handling Colormaps...
(continued from previous page)

work for mixed model clients.

4. Remember to set GlxNuseOverlay to True before
creating the GL widget (or GlxNusePopup for the popup
bitplanes).

5. Remember to add a GIxNoverlayExposeCallback (or
GlxNpopupExposeCallback for the popup planes).

6. Note that it is not possible to allocate all of the
colormap entries for an overlay colormap because color
index 0 is reserved for transparency. Thus using AllocAll
when invoking the XCreateColormap function will fail.
Instead AllocNone should be used, and then a program can
allocate the colors it needs using other X functions (e.g.
XAllocColor, XAllocColorCells).

7. If a mixed model client is using both the normal and

overlay buffer the viewport needs to be set for both of

The following is a list of faxables that
was created to help you save time in

solving your computer problems. To

have one faxed to you, call the Silicon
Graphics’ Hotline at 1(800)800-4SGI and request it by

| name.

i COMMUNICATIONS
Beta Instructions for using IVR.

Setting up sendmail.cf notes.(3.3.X)
Hints on how to configure the sendmail.cf file for IRIX

Setting up sendmail . cf notes.(4.0.1)
Hints on how to configure the sendmail.cf file for IRIX

| LPR setup instructions.
' Installing, configuring and troubleshooting tips for the
Berkeley spooling system.

. Changing tcp_sendspace instructions.
| Modification of sendspace for negotiating tcp window

| sizes. These instructions might be needed for 4. 0.X and PC
i connectivity
|

them—not just the normal buffer. (see the cb_gl_resize

function in cmapov.c below).

Other Mixed Model Hints

1. There is no need to do a redraw for the GL widget
during the resize callback because the next event will cause
an expose callback. A number of the 4Dgifts” GLX
examples do this but it is redundant.

2. The ginit callback of the GL widget is called after the
widget is realized (thus its X window(s) exist at this point).
In fact it is the very first callback invoked for the gl widget
in all mixed model programs. If you need to do
initialization which relies on the existance of the actual X
windows for any of the buffers, this is a good place to do it.

3. Underlays are not supported in mixed model

Modem setup instructions.
Configuring a dial-in/dial-out modem, and helpful hints
Serial pinouts. |
Cable configuration information for connecting a
terminal, printer or modem.

UNIX

Partitioning a disk drive notes (Pipeline Article).
How to change the size of swap space on a disk.
Logging in via Pandora on 4.0.1 sends user back to !
Pandora. I

Correcting login problems under IRIX 4.0.1 '
Unix Q & A for 4.0.1
Configuring floppy drives on SGI systems
Reading DOS formatted floppies on SGI systems

GRAPHICS

Graphics corrected Explorer 1.0 README file

Graphics Q & A for 4.0.X

10

_—

Example Code overlay_cmap_init — create custom overlay-buffer
The primary purpose of the following code is to e

overlay_cmap_set — map a color for the overlay-buffer at
the “*high end”

The routines have been broken up this way so that the

demonstrate how to use custom overlay colors without
calling mapcolor (which is illegal in mixed model

applications). The last Pipeline’s gloverlay.c program was

. ; -overlay-buffer operations can be removed and the
in error due to this fact. cotton-o Y pe

; custom-normal-buffer functionality remains intact, and vice
The key functions are:

- versa. Also, the routines which set colors in the respective
normal_cmap_init — create custom normal-buffer

. . . fiFeisiit oilind :
it e il e maps may wish to implement different policies for locating

“ 27 ¥ l
normal_cmap_set — map a color for the normal-buffer at a good place to put the color” (thus they are implemented

the “high end” separately even though much of their code is the same).

/** header: Ccmapov.c e EE AR AR SRR AR AR EREREEREEE AR AL E AR A RSN

/*
* Mixed Model program demonstrating
% ...using custom colormaps for the normal and overlay buffers.
* ...moving things with the mouse.
| ¥
i * compiling:
x cc -float -prototypes -O cmapov.c -0 cmapov \
i -s -1Xirisw -1¥m s -1Xt_s -lgl_s -1X11 s -1m -lc_s -1PW

*

* operating:

% Use the left mouse button to move the red, green, and blue blocks. !
* Verify that they "pass under" the yellow, magenta, and cyan blocks
= which are in the overlay planes.

* programming:
i Brett Bainter, 92.08.20

*

b

/** notes ***t**t*****t*********i**t****i**k****it*i**i************k*********/

/*

* bugs:

o There is a known bug with 8 bit PI‘s that will cause this program to
* run in false colors. It will initially come up correctly but when

& the cursor moves to a gl window (for example, showmap), the colormap
% will not be reloaded when the cursor returns to the cmapov window.
*/ o

/** includes *****i****i**********t**********i*****k************t************/

#include <stdio.h> /* standard */

(continued on page 14)

11

Q&A

(continued from page 8)
for the local system.

This will give you a very rough estimate of the speed of the
“loopback driver”. You’ll find it’s faster than any physical
driver on the IRIS, and in some cases, far faster than any

network media such as FDDI, ethernet or token ring.

Q: I have a routine which uses an array ‘X’ (in a
FORTRAN common block), and a scalar variable named
‘x_’. Using dbx, ‘x’ is recognized as a scalar rather than an
array. dbx does not recognize ‘x_’ at all.

The compiler does distinguish between the two cases as
illustrated in this example:

integer x(2), X_

x(1) = 10

x(2) = 10

*x .= 20

print *; X, ®x_
end

which outputs:

10 10 20

What is wrong?
A: dbx knows one is debugging a FORTRAN program

because of the “.f’ extension on the source file name. Since

13 1]

this is a FORTRAN program dbx will append an “_" to

all names.

For example:
%dbx a.out
dbx version 2.10 11/15/91 2:02
Type ‘help’ for help.
Reading symbolic information of ‘a.out’
MAIN:2 2 x(1) = 10
(dbx) w
integer x(2), %_
x(1l) = 10
x(2) = 10
x_ = 20

print *, x, X_

oo WD

end
(dbx) stop at 5

Process 0: [2] stop at "/tmp/sue.f":5

(dbx) run

Process 5682 (a.out) started
[2] Process 5682 (a.out) stopped at [MAIN:5
,0x400274]

5 print *, %, X

(dbx) print x
20

dbx appends an underscore making ‘x’ now become ‘x_’
and then looks for the symbol in the symbol table. If found

the second variable ‘x_’ which was set to 20.
(dbx) print x_
'x_" is not defined.

Likewise, dbx appended an underscore to ‘x_" and it could
not find ‘x__" in the symbol table.

This is a dbx problem.

Q: What is the capacity of the DAT tape drive on an
indigo? I can’t get over 100mb of data on a 60 meter DAT
tape (using bru).

A% The 60 meter DAT tapes hold about 1.2GB. You tend
to significantly lose capacity if you can’t give it data fast
enough. You also lose some capacity with different formats.
For example, bru uses more tape than tar for overhead and
error checking.

If you can only store 100MB of data, however, something
else is wrong.

Your first diagnostic step is to measure the capacity of a
scratch tape of the same type. Use a generic system tool
‘dd’ to do this:

The command:
ad if=/dev/zero of=/dev/tape bs=1024k
will copy blocks of zeros to the tape. When done, ‘dd’ will
report the number of megabyte chunks (1024 * k where k=
1024 or (2710) residing on the tape.

An answer such as:

10041 in

100+1 out

translates to 100 megabytes: And 1024 megabytes is a
gigabyte (1073741824). A gigabye takes about two hours

to transfer. An example of the output is:

12

-~

$ timex dd bs=1024k if=/dev/zero of=/dev/tape
dd: write error: No space left on device
1254+0 records in

1254+0 records out

real 2:00:22.10
user 0.05
sys 25.63

This translates to a little over 1.2 gigabytes.

If you can only store 100 MB on a tape, the problem is
most likely a side effect of /etc/brutab. 100MB sounds like
bru thinks that this is a QIC-150 or QIC-120 tape, as
opposed to a DAT tape.

The reason for /etc/brutab is that for reliable tape
archives, a backup tool must close the tape prior its
physical end. Recovery from an “end of media error” is
fragile. To make reliable backups bru plans on the end of
media based on the contents of /etc/brutab Most cartridge
tape drives cannot backspace and write an end of file mark
on a previous block. For this reason it is important for the
application (bru) to close the tape prior to the physical end
of the media.

The text file /etc/brutab describes for bru with a regular
expression (regexp) the various sizes of tape drives.

Note: This will be an approximation of the outcome, as
different runs of the backup program will yield different

results.
fragment of /etc/brutab
#
/dev/r*mt/ts0d[0-7Inr* \
51ze=44032K seek=0 \
prerr=EIO0 pwerr=EIQ zrerr=ENOSFC
zwerr=ENOSPC frerr=ENOSPC fwerr=0 \
wperr=EROFS norewind reopen tape advance

Since media length is often un-reported by tape drives
(un-sensible), the operator must, in general, intervene and
specify the length on the command line or by site specific
bru command line options or brutab changes.

Caution: Any site-specific changes should be recorded on
paper (system notebook) for easy access to backups.

It is very important to make backups in ways that are

familiar to you and can easily be verified.

Q: Showcase documents that contain images can take a
long time to print. What can I do to speed things up?

A: Although images inherently have a lot of data
associated with them, there is one trick that can decrease
the data size and therefore the overall size of the files. That
is to import images, shrink them down to the size you want,
and then, if you know you will not use the full-sized images
again, replace the images with smaller, identical ones. This
trick only works if your current method is to import large
files and shrink them down once inside the Showcase file.
The reason you want to swap out image files is because
Showcase stores the original data. If you import an image
that is 500 by 500 pixels, and then shrink it down to 100 by
100 pixels for use in your document, Showcase will keep
the data for the 500 by 500 pixel image. The data is saved
incase the images need to be stretched back to their full size
later on. If you do not plan on stretching the images, use
smaller images. The Showcase files will be smaller, and
printing will take less time.

The quality of the printed image will suffer a little. The
degradation of the image will depend on the resolution on
your printer.

To replace images within Showcase do the following:
-Click on Gizmos
-Open the Image Gizmo
-Use the Image Gizmo to take a screen snapshot of the
image in your document
-Delete the original image in your document

-Replace it with the image you just took a snapshot of

Q: Running the osview command, in the ‘CPU Usage’
display, when the ‘gfxf’ is greater than 0, does the waiting
consume cpu time, or is it descheduled, freeing the cpu to

context switch to handle non-graphics process?

(continued on page 27)

13

(continued from page 11)

#include <Xm/Xm.h> /* for motif */

#include <Xm/Form.h> /* motif widget */
#include <Xm/Frame.h> /* motif widget */
#include <Xm/PushB.h> /* motif widget */
#include <Xm/RowColurn.h> /* motif widget */
tinclude <¥m/Separator.h> /* motif widget */

ffinclude <X11/Xirisw/GlxMDraw.h> /* gl widget */

/*i’ deflnes ********************************9{****i*********t**********ﬁ******/
/** ty-pedefs **it********************i**********i**********i*******t*********/

/** prototy-pes l'*i***********i*ii*****************t**i******************t****/

extern void main(int argc, char *argv([], char *envp([]);

/* setup */

static void install_colormaps (Widget top_level, Widget glw);

static void normal_cmap_init (Widget glw);

static Pixel normal_cmap_set (Widget glw, int index, short r, short g, short b);
static void overlay_cmap_init (Widget glw);

static Pixel overlay_cmap_set (Widget glw, int index, short r, short g, short b);

/* mixed model support */
static void cb_gl_expose(Widget w, XtPointer client_data, XtPointer call_data);
static void cb gl resize(Widget w, XtPointer client_data, XtPointer call data);
static void cb_gl_ginit (Widget w, XtPointer client_data, XtPointer call_data) ;
static void cb_gl_input (Widget w, XtPointer client_data, XtPointer call_data);
static void cb_gl_overlay_expose (

Widget w, XtPointer client_data, XtPointer call_data
i

/* callbacks (misc) */
static void cb_quit (Widget w, XtPointer client_data, XtPointer call data);

/* drawing */

static void draw_normal_frame(void) ;

static void draw_overlay_frame (void) ;

static void draw_boxes(int cl, int c2, int ¢3);

/** varla_bles ****i**i**i****************i********************************i—**/

/* mixed-model configuration */

static GLXconfig glx_config[] = {
{GLX_NORMAL, GLX_DOUELE, TRUE},
{GLX_OVERLAY, GLX_BUFSIZE, 2},
0, 8. 0 Y

}i

/* information which allows us to use the overlay or popup buffer */
static struct {

char *use;

char *expose_cb;

char *window;

14

char *visual;
char *colormap;
} *over_res, over_res_mapl(2] = {
/* describe needed overlay resources */
{ GlxNuseOverlay, GlxNoverlayExposeCallback, GlxNoverlayWindow,
GlxNoverlayVisual, GlxNoverlayColormap
by
/* describe analogous popup resources for when overlays aren’'t there */
{ GlxNusePopup, GlxNpopupExposeCallback, GlxNpopupWindow,
GlxNpopupVisual, GlxNpopupColormap
20
}:

/* normal buffer colors */
static Pixel n_grey, n_red, n_green, n_blue;

/* overlay buffer colors */
static Pixel o_trans, o_yellow, o_magenta, o_cyan;

/* gl window info */
static struct {

Dimension width; /* in pixels */
Dimension height; /* in pixels */
float pt([3]; /* world position of moving object */

} glwin = {400, 400, {15.0, 20.0, 0.0}};

/i-ir Eunctlons ************ﬂ-**t*i‘k*********t*****t***t************************/

/*
* main - program entry point.
*f
void main(int arge, char *argv[], char *envp[])
{
XtAppContext app_context; /* application context */
Widget app_shell; /* first widget */
Widget form; /* surrounds others */
Widget rowcol; /* manages input buttons */
Widget button; /* quit button */
Widget separator; /* between input and output */
Widget frame; /* to surround gl widget */
Widget glw; /* the gl widget inside window */
Arg args(15]; /* for name/value pairs */
int n; /* for reusable indices */

/* perform capabilities check */
/* use popup planes if there is not enough overlay planes */
over_res = &over_res_map[0];
if (getgdesc (GD_BITS_OVER_SNG_CMODE) < 2) {
glx_config[l] .buffer = GLX_POPUP;
over_res = &over_res_mapl(l];
}
printf("\nUsing the %s planes\n",
over_res==over_res_map? "OVERLAY" : "POPUP"

(continued on next page)

15

(continued from previous page)

&

/* initialize toolkit, creating application shell */
n = 0;
XtSetArg(args[n], XmNtitle, "CMode Overlay"); n++;
app_shell = XtAppInitialize(
&app_context, "Cmapov", NULL, 0, &argc, argv, NULL, args,
)i

/* create container for app */

a=0Q

form = XmCreateForm(app_shell, "form", args, n);
XtManageChild (form) ;

/* create the command area */

n = 0;

XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FOEM); n++;
XtSetArg(args[n], XmNorientation, XmVERTICAL); n++;

rowcol = XmCreateRowColumn(form, "rowcol", args, nj;
XtManageChild (rowcol) ;

/* create the command area buttons */

n = 0;

button = XmCreatePushButton(rowcol, "Quit", args, n);
XtAddCallback (button, XmNactivateCallback, cb_guit, NULL);
XtManageChild (button) ;

/* create separator between command area and output area */
n=90;

XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
XtSetArg(args([n], XmNleftWidget, rowcol); n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args([n], XmNorientation, XmVERTICAL); n++;
separator = XmCreateSeparator (form, "separator", args, n}:'
XtManageChild (separator) ;

/* create the output area */

/* create the frame */

n=0;

XtSetArg(args [n], XmNleftAttachment, XmATTACH_WIDGET); n++;
XtSetArg(args[n], XmNleftWidget, separator); n++;
XtSetArg(args[n], XmNleftOffset, 5); n++;

XtSetArg(args(n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNrightOffset, 5); n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmibottomOffset, 5); n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH _FORM); n++;
XtSetArg(args[n], XmNtopOffset, 5); n++;

XtSetArg(args[n), XmNshadowThickness, 6); n++;

n

16

frame = XmCreateFrame (form, "frame", args, n});
XtManageChild(frame) ;

/* create the gl widget */

o= O

XtSetArg(args([n], GlxNglxConfig, glx config); n++;
XtSetArg(args([n], over_res->use, True); n++;
XtSetArg(args([n], XmNborderWidth, 0); n++;
XtSetArg(args[n], XmNwidth, glwin.width); n++;
XtSetArg(args[n], ¥mNheight, glwin.height); n++;

glw = GlxCreateMDraw(frame, "glw", args, n);
XtManageChild(glw) ;

XtAddCallback (glw, GlxNexposeCallback, cb_gl_expose, 0);
XtAddCallback (glw, GlxNresizeCallback, c¢b_gl_resize, 0);
XtAddCallback (glw, GlxNginitCallback, cb_gl_ginit, 0);
XtAddCallback(glw, GlxNinputCallback, cb_gl_input, 0);
XtAddCallback (glw, over_res->expose_cb, cb_gl_overlay expose, 0);

/* setup custom normal cclormap */
normal_cmap_init (glw) ;

n_grey = normal_cmap_set (glw, 0, 125, 125, 125);
n_red = normal_cmap_set{glw, 1, 255, a, g)is
n_green = normal_cmap_set (glw, 2, 0, 255, 0};
n_blue = normal_cmap_set(glw, 3, 0, 0, 255};

/* setup custom overlay colormap */
overlay_cmap_init (glw) ;
o_trans =i /* transparent is always zero */

o_vellow = overlay cmap_set(glw, 0, 255, 255, 0);
o_magenta = overlay_cmap_set (glw, 1, 255, 0, 255);
o_cyan = overlay_cmap_set (glw, 2, 0, 255, 2585

/* realize the app, creating the actual x windows */
XtRealizeWidget (app_shell) ;

/* setup for colormap installation */
install_colormaps (app_shell, glw);

/* enter the event loop */
XtAppMainLoop (app_context) ;

[¥= BUpporh; BELUD mm i et e e ey e s e e e e g

/*
*
*
5

*

i

install_colormaps - let the window manager know about our colormaps.

This has been generalized to handle any windows a gl widget might have.
It may not necessarily being using any of them.

static void install_colormaps (Widget top_level, Widget glw)

{

Window overlay_win, popup_win, underlay_win;

(continued on next page)

17

(continued from previous page)

Window window[5];
int 1i;

! XtVaGetValues

! glw,
GlxNoverlayWindow, &overlay_win,
GlxNpopupWindow, &popup_win,
GlxNunderlayWindow, &underlay_win,

NULL
:):
i i=0;
[if (overlay_win)
window[i++] = overlay_win;
if (popup_win)
window[i++] = popup_win;

if (underlay_win)
window([i++] = underlay_win;
window[i++] = XtWindow (glw);
window[i++] = XtWindow(top_level);
XSetWMColormapWindows (XtDisplay (top_level), XtWindow(top_level), window, 1i);

/*- support: custom normal colormap - e e e e A e i S i e
/* '
* normal_cmap_init - create a new normal colormap for the gl widget.

* The gl widget must already be created prior to calling this function,
* however the gl widget does not need to be realized for it to work. This
i * is because the window it uses in creating the colormap is the root window
* on the same screen.
i £
static void normal_cmap_init (Widget glw)
{
Display *display;
Window window;
XVisualInfo *visinfo;
Colormap pmap;
Colormap cmap;
XColor *color;
int ncolors;
int 1i;

/* get display; any window on the same screen; and the visual */
display = XtDisplay (glw);

window = RootWindowOfScreen (XtScreen(glw));

XtVaGetValues (glw, XmNvisual, &visinfo, NULL);

/* create new normal colormap, allocating all entries */
cmap = XCreateColormap(display, window, visinfo->visual, AllocAll);

/* set new normal colormap for the gl widget */

18

XtVaSetValues (glw, XmNcolormap, cmap, NULL);

/*
* duplicate the parent’s default colors for the lower colormap entries
* (max 256) to avoid colormap flashing on machines with only one h/w
* colormap.
e
XtVaGetValues (XtParent (glw) , XmNcolormap, &pmap, NULL) ;
ncolors = visinfo->colormap_size;
printf ("\nnormal colors = %d\n", ncolors);
if (nceolors > 256)
ncolors = 256;
color = (XColor *) XtMalloc (ncolors*sizeof (XColor));
for (i=0; i<ncolors; i++)
color[i] .pixel = i;
XQueryColors(display, pmap, color, ncolors);
XStoreColors (display, cmap, color, ncolors};
XtFree(color);

/*
* normal_cmap_set - map a color for the normal buffer.
*
* This uses a simple scheme of mapping the colors backwards from the highest
* colormap index.
e
static Pixel normal_cmap_set (Widget glw, int index, short r, short g, short b)
{
XVisualInfo *visinfo;
Colormap cmap;
XColor color;
int n_last;

XtVaGetValues (glw, XmNvisual, &visinfo, XmNcolormap, &cmap, NULL);

n_last = visinfo->colormap_size-1;

color.pixel = n_last - index; /* work backwards from the last position */
color.flags = DoRed | DoGreen | DoBlue;

color.red = ¥ < 8;
color.green = g << 8;
color.blue = b << 8;

XStoreColor (XtDisplay (glw), cmap, &color);
return (color.pixel);

/*— guppert: custom overlay €olormap —~——=r—-—rmmsmmmmm s e L
/*

* overlay cmap_init - create a new overlay colormap for the gl widget.

*

* The gl widget must already be created prior to calling this function,
* however the gl widget does not need to be realized for it to work. This

(continued on next page)

19

(continued from previous page)

* ig because the window it uses in creating the colormap is the root window
* on the same screen.
*f
static void overlay_cmap_init (Widget glw)
{
Display *display;
Window window;
XVisualInfo *visinfo;
Colormap cmap;
XColor color;
int ncolors;
Pixel *pixel;
unsigned long plane_mask([1];
int result;

/* get display; any window on the same screen; and the wvisual */
display = XtDisplay (glw);

window = RootWindowOfScreen(XtScreen(glw));

XtVaGetValues (glw, over_res->visual, &visinfo, NULL);

/*

* create new overlay colormap, allocating no entries.

* (AllocAll would fail here because index 0 is reserved for transparency)
xf

cmap = XCreateColormap(display, window, visinfo->visual, AllocNone);

/* set new overlay colormap for the gl widget */
XtVaSetValues (glw, over_res->colormap, cmap, NULL);

| /* allocate every color except transparency as read/write */

ncolors = visinfo->colormap_size; /* including transparent color */
printf ("\noverlay colors = %d\n", ncolors);
pixel = (Pixel *) XtMalloc(ncolors*sizeof (Pixel)); /* stub array */

result = XAllocColorCells(

display, cmap, True, plane_mask, 0,

&pixel[1l], ncolors-1 /* one less due to transparency */
);
XtFree((char *) pixel);

/* check for boocboo */
if (result == 0)
fprintf (stderr, "XAllocColorCells failed for overlay buffer.\n");

* pverlay_cmap_set - map a color for the overlay buffer.

* This uses a simple scheme of mapping the colors backwards from the highest
* colormap index.
*3

static Pixel overlay_cmap_set (Widget glw, int index, short r, short g, short b)

20

XvisualInfo *visinfo;
Colormap cmap;
XColor color;

int n_last;

XtVaGetValues (
glw, over_res->visual, &visinfo, over_res->colormap, &cmap, NULL
Yi
n_last = visinfo->colormap_size-1;
color.pixel = n_last - index; /* work backwards from the last position */
color.flags = DoRed | DoGreen | DoBlue;

color.red = r << 8;
color.green = g << 8;
color.blue = b << 8;

XStoreColor (XtDisplay (glw), cmap, &color);
return (color.pixel);

/%~ sdpport: .callbacks: (gl widgebt) —==roreromsssesscmosecommorrn o ee oo xf
/*

* cb_gl_expose - handle expose events for the gl widget.

*

static void cb_gl_expose(Widget w, XtPointer client_data, XtPointer call_data)

{
GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) call_data;

GLXwinset (XtDisplay (w), XtWindow(w));
draw_normal_frame();

/ *

* ¢b gl_resize - handle resize events for the gl widget.

7
static void cb_gl_resize(Widget w, XtPointer client_data, XtPointer call_data)
{ .
GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) call_data;
Window overlay_window;

/* squirrel away size */
glwin.width = glx->width;
glwin.height = glx->height;

/* setup normal buffer viewport */
GLXwinset (XtDisplay (w), XtWindow(w));
viewport (0, glx->width-1, 0, glx-zheight-1);

/* setup overlay buffer viewport */
XtVaGetValues (w, over_res->window, &overlay_window, NULL);
GLXwinset (XtDisplay (w), overlay_window) ;

(continued on next page)

21

(continued from previous page)

viewport (0, glx->width-1, 0, glx->height-1);

/*

* ¢b_gl_ginit - perform any necessary graphics initialization.

2

static void cb _gl_ginit (Widget w, XtPointer client_data, XtPointer call_data)

{
GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) call_data;

GLXwinset (XtDisplay (w) , XtWindow(w));

mmode (MVIEWING) ;
ortho2(-0.5, 100.5, -0.5, 100.5);
gflush();
}
/*
* cb gl _input - handle input for the gl window.
*

static void cb_gl_input (Widget w, XtPointer client_data, XtPocinter call data)
{

static Boolean active = False; /* currently moving? */

static float dx, dy; /* offset from current position */
1*=f

GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) call_data;
XEvent *event = glx->event; /* what occured */

int msx, msy; /* gl window mouse position */

float mwx, mwy; /* gl world mouse position */
GLXwinset (XtDisplay (w) , XtWindow (w));

/* map to gl window coords */
msx = event->xbutton.x; /* same x */
msy = (glwin.height-1) - event->xbutton.y; I* flip v*/

/* map to gl world coords */
0.0 + ((msx - 0) / (fleat)glwin.width) * 100.0;
0.0 + ((msy - 0) / (fleat)glwin.height) * 100.0;

WX
mwy

I

/* process event */
switch (event->type) {
case ButtonPress:
if (event->xbutton.button == Buttonl) {
/* compute delta from current position */
dx = mwx - glwin.pt[0];
dy = mwy - glwin.pt[1];
active = True;
}
break;
case MotionNotify:
if (active) ({

22

/* compute new position and draw */
glwin.pt [0] = mwx - dx;
glwin.pt[1l] = mwy - dy;
draw_normal_frame();

}

break;

case ButtonRelease:

if (event->xbutton.button == Buttonl) {
/* we're done */
active = False;

break;

/*
* cb_gl_overlay_expose - handle overlay expose events for the gl widget.
*
static void cb_gl_overlay_expose(
Widget w, XtPointer client_data, XtPointer call data

{
GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *)} call data;
GLXwinset (XtDisplay (w), glx->window) ;
draw_overlay frame();
}
/*- support: callbacks (mMisg) ———=—==—=——m—m——— */
/*
* cb_gquit - exit application.
*f

static void cb_quit (Widget w, XtPointer client data, XtPointer call_data)
{

exit (0);
}
/*- support: drawing ——————mmmmm e e e e e *f
/*
* draw_normal_frame - render cbjects in the normal buffer and swap.
*/
static void draw_normal_frame (void)
{
color{n_grey);
clear();
pushmatrix();

translate (glwin.pt[0], glwin.pt[1l], glwin.pt[2]);
draw_boxes (n_red, n_green, n_blue);
popmatrix() ;

(continued on next page)

23

(continued from previous page)

swapbuffers() ;
gflush() ;

/*
* draw_overlay frame - render objects in the overlay buffer.
Xf
static void draw_overlay. frame(void)
{
color (o _trans) ;
clear();
pushmatrix() ;
translate(15.0, 60.0, 0.0);
draw_boxes (o_yellow, o_cyan, o_magenta);
popmatrix();
gflush();

/*
* draw_boxes - draw three boxes in three different colors.
3
static void draw_boxes(int c¢l, int c2, int c3)
{
static fleoat vert([][2] = { yE A bo e
050 0
{20.0, 050),
{20.0, 20.0},
£:580,10), 200k
i

pushmatrix() ;
coler(cl);
bgnpolygon () ;
v2f (vert[0]); v2f(vert[l]); v2f(vert[2]); vaf(vert[3]);
endpolygon () ;
translate(25.0, 0.0, 0.0);
color(c2);
bgnpolygen () ;
v2f(vert[0]); v2f(vert[l]); v2f(vert([2]); v2f(vert[3]);
endpolygon() ;
translate(25.0, 0.0, 0.0);
color(c3);
bgnpolygon() ;
v2f(vert[0]); v2f(vert(l]); v2f(vert[2]); v2f(vert[3]);
endpolygon() ;
popmatrix() ;

/** eof t*****************i*#**l

24

% SiliconGraphics

Customer Center: (800) 800-4SGl

For the following support services:
» Telephone Support
* On-Site Support
* Parts Support
» Customer Education

IRIS Universe: (415) 390-1278

FAX Numbers

Contract Administration: (415) 967-8544
Customer Education: (415) 965-2309
Logistics: (415) 960-2883 (in the U.S.)

(416) 674-5911 (in Canada)
Technical Assistance Center: (415) 961-6502

Customer Support Guide

Contract Administration (areas):

- Eastern Area: (415) 390-5210
Central Area: (415) 390-1622
Western Area: (415) 390-3577
Canada: (416) 674-5300

Area Offices:

(Area offices handle support contract
renewals.)

Eastern: (508) 562-4800

Central: (313) 478-5446

Western: (415) 960-1940

Canada: (416) 674-5300

Corporate Offices: (415) 960-1980

If you have a request that is not addressed by
any of your other options.

Reference Guide to Silicon Graphics’
Automated Call Distribution system

' Customer Center
phone number
(800) 800-45Gl

Technical Customer
Assistance Education
Center Purchase
I (—

;l—-_ 1

For general Repeat
information.

r
.
Hotoms ez Y=

To reference a

To speak with a Toreacha
Call Administrator previously opened specific
to open a new support call coordinator.
support call. (requires a Call D).

L)

Maintenance
Spare Parts

If you do not select any
options or you do not have

i a touch-tone phone, you
Product - 4
fiforeaition will be connected to a

Call Administrator.

At any time, you may choose
the following options:

Goto

current menu. previous menu.

Stuck for a solution?

Bundled Value [
Convenience ﬁ]
Partnership
Support Services [
Support Programs [} |

Training

=

Turn to Silicon Graphics.

Tap into the Silicon Graphics support system — services and programs that
complement your Silicon Graphics hardware and software. Note the

] services your support agreement provides. Pipeline subscriptions are bundled with
support programs as indicated. The newsletter is not available separately.

| FullSupport |

Updates

Also includes:

Set-Up/Installation

Set-up for systems along with
instillr;tion%:f upgrader;gand
add-ons.

Operational Instruction
Up to two hours of
operational instruction
provided at system set-up.

A Silicon Graphics
engineer provides
technical assistance via the
telephone. The Telephone
Support staff consists of
experts in UNIX, hardware,
communications, graphics
and programming
languages.

A Silicon Graphics
engineer is dispatched to
g;ur site if your system

ils. The engineer
troubleshoots the problem
and repairs the system,
replacing any necessary
parts.

Netier - ol T

To obtain more
information

about the
support services
or programs
listed here, call
your local sales
office or call
SGI Express at

(800) 800-SGI1

[[Seitogo| |

—

Software
Updates

< Pipeline
Newsletter

S ilicon Graphics provides support services to assist you with
installing, maintaining and using your workstation. The services
described below are available on a time and materials basis or
bundled in the support programs shown on this page.

Parts are provided to
repair a hardware failure in
your system, The faulty
part is returned to Silicon
Graphics. This process is
provided transparently
with On-Site Support
coverage.

New releases of operating
system software are
ghmvided as they occur.

e updates are available
on storage media or as
right-to-use licenses.

The bi-monthly newsletter
contains technical articles
and answers to common
computing questions. A
subscription is provided for
the length of the support

~ agreement. Subscriptions

are only available bundled
with support programs.

Telephone Support provided
for sghwamrgated questions

only.

Software
Updates

Pipeline
Newsletter

Q8A
(continued from page 13)
A : When the gfx FIFO is full, the CPU is spinning,
waiting for it to drain to a less than “full” state. Initially this
happens at high spl (processor interrupt level), then it drops
to allow most other interrupts to enter. On RealityEngine,
instead of going low spl, we deschedule until a low-water
interrupt occurs.

The reason gfx seems so abusive is that the FIFO is full
for such short periods of time that in nearly all cases

instantly descheduling would kill graphics performance.

Q: I have recently begun receiving the following error on

our 320 and Indigo (running IRIX 4.0.1):
% rsh ibm

ibm: ibm: cannot open

A2 There are two programs named rsh. One is the
remote shell located in /usr/bsd (this is the one you want).
The other is a restricted shell located in /bin (this is the one
you’re running). The PATH environment variable controls
which one is selected. It is a list of directories to search for
commands. To see your path, type echo $PATH. To see
which rsh would be selected type which rsh. To fix your
problem, you can either explictly run the “correct” rsh by
typing /usr/bsd/rsh instead of rsh, or you can change your
PATH variable, putting /usr/bsd before /bin. in your login

file.

IRIS, Silicon Graphics, and the Silicon Graphics logo are registered trademarks,
and IRIS 4D, IRIS Graphics Library, GL. IRIX, Personal IRIS, IRIS Indigo,
POWER Vision, POWER Series, IRIS Explorer and IRIS Inventor are trademarks,
of Silicon Graphics, Inc. UNIX is a registered trademark of UNIX System
Laboratories, Inc. PostScript is a registered trademark of Adobe Systems, Inc.
OSE/Motif is a trademark of the Open Software Foundation, Inc. X Window
System is a trademark of the Massachusetts Institute of Technology. All other
trademarks and other proprietary rights associated with non-Silicon Graphics
products described herein may be claimed by the developers, manufacturers, or
others having rights to such products.

| % SiliconGraphics

Editor: Susan Berning

Contributors: Dave Anderson, Rick Avila, Ivan Bach,
Brett Bainter, Nina Cabello. Tom Davis, Al Fohrman, Dave
Frederick. Ivan Hajadi, Brian McClendon, Martin
McDonald. Dave Olson. Jovce Richards, Calvin Vu, Joe
Yetter

Published bi-monthly by the Customer Support Division
of Silicon Graphics. Inc. for customers with support
agreements. Copyright © 1992. Silicon Graphics, Inc.

The Pipeline welcomes your comments. Please contact us

with any questions or suggestions for the newsletter. Call a
telephone number at right for subscription inquiries.* Send
article and Q&A topics along with other correspondence to:

e-mail address:

Silicon Graphices, Inc.
pipeline @sgi.com

P.O. Box 7311, M/S 12-180
Mountain View, CA 94039-7311
Attn: Susan Berning

#Please have the serial number of your system available
when making inquiries.

In the U.S. and Canada, to subscribe to Pipeline, or change your
current mailing address, for technical assistance and other support
services, and, to reach Customer Education, call the Silicon
Graphics Customer Center at: (800) 800-4SGI

For customer support overseas, call the Hong Kong
Silicon Graphics office nearest you: Phone: (852) 5 - 25.72.37
Italy — Milan

Australia — Brisbane
Phone: (61) 7 - 257 .11.94
Australia — Melbourne
Phones: 008 - 335430
(61) 3 - 882.82.11 (in Metvoume)
Australia — Sydney
Phones: 008 - 251 073

Phone: (39) 2 - 57.51.01.08
Israel — Tel Aviv
Phone: (972) 3 - 49.21.91
Japan — Kawasaki
Phone: (81) 44 - 812.60.60
Latin America — Pompano Beach

(61) 2 - B79.95.00 tin sydney!

Belgium — Brussels

Phone: (32) 2 - 675.21.10
D k — Copenhag,

Phone: (45) 31 - 95.00.88
Finland — Helsinki

Phone: (358) 0 - 4354.2071
France — Paris

Phone: (33) 1 - 34.65.96.85
Germany — Berlin

Phone: (49) 30 - 823.10.42
Germany — Karlsruhe

Phone: (49) 721 - 96.20.70
Germany — Koln-Niehl

Phone: (49) 221 - 71.52.40
Germany — Munich

Phone: (49) 89 - 461.08.0
Holland — De Meern

Phone: (31) 34.06 - 21.711

Phone: (1) 305 - 785.28.62

FAX: (1) 305 - 781.95.79
Norway — Oslo

Phone: (47) 2 - 73.20.15
Singapore

Phone: (65) 776.0970
Spain — Madrid

Phone: (34) 1 - 572.03.60
Sweden — Stockholm

Phone: (46) 8 - 33.07.05
Switzerland — Lausanne/Vidy

Phone: (41) 21 - 25.94.12
Switzerland — Zurich

Phone: (41) 1 - 731.10.70
Taiwan — Taipei

Phone: (886) 2 - 393.41.88
United Kingdom — Reading

Phones: 0734 - 30.63.63 wwn

0734 - 30.60.40 jaher

% SiliconGraphics BULK RATE

Computer Systems U.S. POSTAGE

PO. Box 7311, M/S 12-134 PAID

Mountain View, CA 94039-7311 PERMIT NO. 913 ﬂ
SAN JOSE, CA

Address correction requested

If you have received this

newsletter, but do not have <)

a Silicon Graphics

workstation, please pass it

along to a member of your

organization that does.

Send inquiries (in the U.S. R ———

and Canada) to the address ———————

listed on the previous page.

Send address corrections I 11is newsletter is printed on
to the address above or log ‘a recycled paper using soy ink.

a call (see previous page).

Starting Dates
October November December
Length 5 12 19 26 2 9 16 23 30 7 14 21 28
Graphics Library Programming | [£] 45days | @ 8]
Graphics Library Programming Il & PowerVision (& 48 45 days [] @ ﬂ
Motif Programming 1 4 days @
= Realtime Programming 4.5 days (]
Parallel Programming «s 4.5 days (]
| Mastering IRIX = 4.5 days @) [
System Administration (& 4.5 days E))
.. = Advanced System Administration & 45 days @ @
= Network Administration == 4.5 days []
TG0 IRIS Inventor &2, 4.5 days @
IRIS Explorer &% 45 days o @
System Maintenance (Power Series) = 10 days @ €]
End User Fundamentals =, 2 days
Graphics Library Programming | (7 4.5 days @
Graphics Library Programming Il & PowerVision A7 4.5 days @
=+ Motif Programming ¥1 4 days &
Realtime Programming £ 45 days []
8 Parallel Programming «&a 4.5 days
= | Mastering IRIX & 45 days ®
=151 System Administration (0 45days [
7= Advanced System Administration &5 4.5 days ®
Network Administration == 45days | @
System Maintenance (Power Series) 10 days ®
Graphics Library Programming | 18] 4.5 days @
Graphics Library Programming Il (& 3days
Mastering IRIX & 4.5 days © @ ;
System Administration |5 4.5 days] €] ﬂ
Network Administration == 4.5 days
=5=20 RIS Inventor &P, 4.5 days @

To register for one of these courses, or get additional information on training programs and policies, please call Customer Education at
(800) 800-4SGlI (U.S. and Canada) or an overseas Silicon Graphics office. (Schedule subject to change.)

