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An attempt to re-create the structures and processes of life is im-
mensely appealing to the imagination, balancing on the frontier be-
tween science and fiction. Known results [Langton 1988] range from
the design of self-reproducing genetic messages to the replication
of social behavior of animals. Between these extremes lie models of
self-assembling viruses and simulations of multicellular organism
development. As in physically-based modeling, where an astonish-
ing degree of realism has been obtained by adhering to the funda-
mental laws of physics, realistic models of living structures can be
produced by referring to biological mechanisms of development.
The challenge of biologically-based modeling is reinforced by the
fact that biological laws are often expressed qualitatively, without
providing enough detail to construct a definitive model. Conse-
quently, an attempt to simulate reality brings an insight into the na-
ture of the underlying biological processes and structures.

In this article we outline our recent results related to the modeling
of plants and simulation of their development. Many of these re-
sults were obtained in cooperation with Professor Lindenmayer and
his students from the Theoretical Biology Group at the University of
Utrecht. Technical details are presented in a paper by Prusinkie-
wicz, Lindenmayer and Hanan [1988].

As the primary tool for the modeling of plants, we employ the for-
malism of L-systems, originated by Lindenmayer [1968] as a mathe-
matical description of plant development on the cellular level, and
introduced to computer graphics by Smith [1984]. This formalism
represents a plant structure using a sequence of symbols, each cor-
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responding to a plant component or "module”. In
the modeling of lower plants, such as bacteria, al-
gae, or fungi, symbols usually represent individual
cells. In the case of higher plants, such as herba-
ceous plants and trees, cells are too low-level to
serve as the basic modules. Consequently, the mod-
el is usually expressed in terms of structural compo-
nents such as internodes (tree segments between
two consecutive branching points), apices, and or-
gans (leaves, flowers and fruits).

The process of producing new modules from exist-
ing ones is essential to biological development. On
the microscopic scale, cells subdivide and produce
new cells. On the larger scale, apices initiate new
branches terminated with their own apices. The
formalism of L-systems represents such processes
using rewriting rules or productions. These terms,
borrowed from formal language theory, denote
rules for the substitution of string symbols. In con-
trast to the wider known Chomsky grammars which
operate in a sequential manner, L-systems are in-
herently parallel. In other words, all symbols in a
string are rewritten in a single step. This corre-
sponds with the developmental processes in plants,
where subdivision may occur simultaneously in
many plant parts.

For example, let us consider the developmental
simulation of a multicellular filament such as is
found in the bacteria Anabaena catenula and vari-
ous algae [Mitchison and Wilcox 1972, Lindenmay-
er 1982]. The symbols 7 and b represent cytological
states of the cells (these states correspond with their
sizes and readiness to divide). The subscripts / and r
indicate cell polarity, specifying the positions in
which the daughter cells of typea and b will be
produced. The development is governed by an L-
system comprised of four rules:

a,-—> albr’ ay-—> bjar, br - a, and bI >4

Starting from a single cell a,, this L-system generates
the following sequence of strings:

a,
albr
bpa,a,
Bb Ay

blarblara rbla o

Under a microscope, the cells appear as cylinders of
various lengths. The a-type cells are longer than the
b-type cells. The corresponding schematic image of
filament development is shown in Figure 1.




In spite of its simplicity, the above example illustrates
two important features of L-systems. First, the for-
malism is capable of amplifying the data base [Smith
1984], i.e. producing large, complex structures from
very concise descriptions. Secondly, this amplifica-
tion occurs by simulating the developmental process-
es which yield particular structures in nature. Thus, a
model constructed with biological processes in mind
can be directly applied to show entire developmental
sequences. This point is illustrated by Figures 2-4.

Figure 2 represents four developmental stages of a
leaf of the moss Phascum cuspidatum. Phascum
leaves consist of single layers of cells, which makes
them particularly suitable for detailed analysis under
a microscope. An extension of L-systems from
strings to graphs with cycles was introduced by Lin-
denmayer and Rozenberg [1979] under the name of
map L-systems, and first applied to automatically
plot cellular structures by de Does and Lindenmayer
[1983]. The model shown in Figure 2 was generated
using a map L-system devised by Martin de Boer.

Figure 3 shows the development of a flowering plant,
Lychnis coronaria. Its growth pattern was analyzed
and expressed mathematically using a formalism
similar to L-systems by Robinson [1986]. Figure 4
shows the development of Mycelis muralis, analyzed
and formalized by Janssen and Lindenmayer [1987].
The flowering sequence of Mycelis is quite complicat-
ed from the viewpoint of control mechanisms em-
ployed by the plant. This is exhibited by the basipetal
flowering sequence, i.e. progression of the blooming
zone from the topmost parts of the plant towards its
base. Since the oldest branches are near the plant
base and the youngest ones are near the top, the ba-
sipetal sequence is counter-intuitive: the younger a
branch is, the sooner it will produce flowers! In living
plants such effects are controlled by hormones which
flow across the branches and time subordinate pro-
cesses. Accordingly, simulated flow of three hor-
mones is the key to the Mycelis model.

To present the link between biological reality and
model construction in more detail, let us consider the
example of a synthetic image "The Garden of L" (see
cover). The central object of the scene is a lilac inflo-
rescence. Its model incorporates the following rules,
based on the analysis of real inflorescences:

1. topology

a) The inflorescence has a recursive structure, with
lower branches approximately replicating the higher
portion of the inflorescence.

b) The first 2-8 lateral branches, counting from the
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figures 2-4: Phascum cuspidatum, Lychnis coronaria, Mycelis muralis
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apex of the mother branch, consist of
an internode terminated by a single
flower. The subsequent lateral (child)
branches carry second-order (grand-
child) branches. The number of sec-
ond-order branches carried by a later-
al branch increases linearly while trav-
eling along a mother branch axis from
the apex towards the base.

2. branching angles

a) Lateral branches occur in pairs. The
axes of the consecutive pairs lie in
planes perpendicular to each other.

b) The branching angle between the
axes of the mother and the child
branch is equal to 60 degrees.

c) If A is a mother branch, B is its child
branch, and C and D are two grand-
children closest to the base of B, then
the plane containing the axes of
branches C and D is perpendicular to
the plane defined by the axes of
branches A and B.

3. proportions

a) All flowers within an inflorescence
are approximately in the same devel-
opmental phase and have the same
size.

b) The lengths of consecutive inter-
nodes along any axis form an arithme-
tic series, with the longest internode at
the axis base.

c) The mother axis internode and the
lateral internodes originating at a giv-
en branching point all have approxi-

mately the same length.

The information about proportions is
the most difficult to infer, not only in
the case of lilac, but generally in all
plants. In contrast to the branching
angles, which are fairly constant within
a given plant species, the internode
lengths are strongly influenced by the
environment in which the plant devel-
ops. Consequently, the general rules
governing proportions between plant
components are masked by individual
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variations. A statistical analysis of a
large number of inflorescences could
reveal the underlying rules, but would
be very time-consuming (and deadly
to the flora around the graphics lab).
In practice, it is simpler to assume the
existence of a functional relationship
between the lengths of the consecutive
segments and their ordering numbers,
and experimentally choose a function
yielding correct proportions of the en-
tire structure. In the case of the lilac
inflorescence, the correct proportions
were obtained assuming a linear func-
tion.

According to the developmental ap-
proach to modeling, the target plant
structure results from a simulated
growth process. In the case of lilac in-
florescences, the consecutive seg-
ments of each axis as well as the lateral
branches are produced exclusively by
the apex (this type of development is
known as subapical growth). As the in-
ternodes elongate in time, their
lengths gradually increase while
progressing from young internodes
near the apex towards the older ones
situated near the base. Thus, the spa-
tial structure of an inflorescence re-
sults from the timing of the underlying
developmental processes.

The branching structure of internodes
forms the inflorescence skeleton, bear-
ing the individual flowers. A single
flower is small compared to the size of
the entire inflorescence and can be ad-
equately modeled by a collection of
five bicubic surfaces which represent
the four petals and the calyx. In con-
trast, the foreground lilac leaves in the
Garden of L result from developmen-
tal processes. The midrib and the lat-
eral "veins" form branching structures
on which the blades are built. The
overall leaf shape results from the se-
quence of angles under which the
veins meet the midrib, and the rela-
tionship between their respective
growth rates.

An interesting problem is related to
the positioning of leaves on twigs. In

principle, the leaves follow a pattern
similar to that of lateral branches in in-
florescences. They occur in pairs, with
the stems of the consecutive pairs ly-
ing in planes perpendicular to each
other and branch from the twig at an
angle of 60 degrees. However, external
factors, namely gravity and sun light,
play an essential role in positioning the
leaves so that they hang down and
have blades facing the sun. The com-
bined effect of gravity (negative geot-
ropism) and sunlight is also responsi-
ble for curving the twigs up. These
effects can be observed in the back-
ground lilac twigs. The specimen-to-
specimen variation between the twigs
was simulated by incorporating sto-
chastic mechanisms into L-systems.

Compared to the lilac inflorescences,
the apple twigs appearing in the upper
left corner of the Garden of L and de-
tailed in Figure 5 have a relatively sim-
ple structure. The short lateral branch-
es leave the main axis at equal
intervals. Each branch carries six
leaves and six flowers. Essential to the
model is the spiral arrangement of lat-
eral branches along the main axis, and
leaves encircling each branch. In both
cases, the angle between consecutively
placed elements (branches of leaves)
is close to 137.5 degrees. Stevens [1974]
provides the following intuitive expla-
nation:

"Why that special angle? Because it has
something to do with plant tissues? No.
The angle only sets the points in proper re-
lation to one another, so that each point
makes a small angle with the older point in
the previous whorl and a large angle with
the younger point. That relation comes
about quite naturally in the meristem of the
plant as a direct result of each stalk's fit-
ting the gaps of other stalks. ... The plant
uses no mathematics, it simply grows the
stalks where they have the most room."

The angle of 137.5 degrees also occurs
in the daisies which grow in the lower
right corner of the Garden of L; a mag-
nified view of the flower capitulum is
shown in Figure 6. The spiral arrange-
ment of the florets results from the fol-
lowing formula, attributed to Erickson:




d=n*137.5° r=C vn)

where:

- d1is the angle between a reference di-
rection and the position vector of the
n-th floret in the polar coordinate sys-
tem originating at the capitulum cen-
ter, and

- r is the distance between the capitu-
lum center and the center of the n-th
floret, given a constant scaling param-
eter.

The square-root relationship between
the distance r and the floret ordering
number n has a geometric explana-
tion. Assuming that all florets have the
same size and are densely packed, the
total number of florets which fit inside
a disk of radius r is proportional to the
disk area. Thus, the ordering number
n of the most extremely positioned flo-
ret in the capitula is proportional to 72,

orr=C(n).

Let us abstract from the details of the
Garden of L to look at plant modeling
from a larger perspective. What are
the implications of the biologically-
based approach? In the practical do-
main, plant models are useful in at
least two areas. On one hand, simulat-
ed plants can be incorporated into
computer-generated images of archi-
tectural projects, thus increasing their

figure 5: an apple twig
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degree of realism. The developmental
nature of the model makes it possible
to anticipate landscape changes over
time. On the other hand, computer
simulations offer an unprecedented
tool for the quantitative analysis of de-
velopmental mechanisms in plants.
Real-life processes which occur in the
time scale of months or years can be
speeded up to seconds or minutes dur-
ing computer simulations. Critical par-
ameters, such as hormone propaga-
tion rates, can be easily modified.
Hypothetical control mechanisms can
be implemented and their implica-
tions visualized.

The realistic rendering of developmen-
tal models creates an illusion of life. It
is easy to forget the underlying mathe-
matical formalism and simply see
plants growing, self-replicating, re-
sponding to external factors, even mu-
tating. Although they are mere com-
puter processes, we are fascinated by
their life-like appearance and behav-
ior.
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figure é: capitulum of the painted daisy









