
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 19 – Running a Program II
(Compiling, Assembling, Linking, Loading)

 2008-03-05

Researchers at Princeton have developed a
flexible electricity-producing sheet of rubber
that can use body movements into electricity.
Breathing generates 1 W, walking around the
room generates 70 W. Shoes may be the best
place, to power/recharge cell phones & iPods.

Lecturer SOE
Dan Garcia

www.nytimes.com/2010/03/02/science/02obribbon.html

Hello to
Neil Sharma

from the 3rd row!

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (3) Garcia, Spring 2010 © UCB

Symbol Table
  List of “items” in this file that may be used by

other files.
  What are they?

  Labels: function calling
  Data: anything in the .data section; variables which

may be accessed across files

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (4) Garcia, Spring 2010 © UCB

  List of “items” this file needs the address later.
  What are they?

  Any label jumped to: j or jal
  internal
  external (including lib files)

  Any piece of data connected with an address
  such as the la instruction

Relocation Table

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (5) Garcia, Spring 2010 © UCB

  object file header: size and position of the other
pieces of the object file

  text segment: the machine code
  data segment: binary representation of the data in

the source file
  relocation information: identifies lines of code that

need to be “handled”
  symbol table: list of this file’s labels and data that

can be referenced
  debugging information
  A standard format is ELF (except MS)

http://www.skyfree.org/linux/references/ELF_Format.pdf

Object File Format

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (6) Garcia, Spring 2010 © UCB

Where Are We Now?

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (7) Garcia, Spring 2010 © UCB

  Input: Object Code files, information tables (e.g.,
foo.o,libc.o for MIPS)

  Output: Executable Code
(e.g., a.out for MIPS)

  Combines several object (.o) files into a single
executable (“linking”)

  Enable Separate Compilation of files
  Changes to one file do not require recompilation of

whole program
  Windows NT source was > 40 M lines of code!

  Old name “Link Editor” from editing the “links” in jump
and link instructions

Linker (1/3)

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (8) Garcia, Spring 2010 © UCB

.o file 1

text 1

data 1

info 1

.o file 2

text 2

data 2

info 2

Linker

a.out
Relocated text 1

Relocated text 2
Relocated data 1

Relocated data 2

Linker (2/3)

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (9) Garcia, Spring 2010 © UCB

Linker (3/3)
  Step 1: Take text segment from each .o file and

put them together.
  Step 2: Take data segment from each .o file, put

them together, and concatenate this onto end of
text segments.

  Step 3: Resolve References
  Go through Relocation Table; handle each entry
  That is, fill in all absolute addresses

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (10) Garcia, Spring 2010 © UCB

  PC-Relative Addressing (beq, bne)
  never relocate

  Absolute Address (j, jal)
  always relocate

  External Reference (usually jal)
  always relocate

  Data Reference (often lui and ori)
  always relocate

Four Types of Addresses we’ll discuss

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (11) Garcia, Spring 2010 © UCB

Absolute Addresses in MIPS
  Which instructions need relocation editing?

  J-format: jump, jump and link

  Loads and stores to variables in static area, relative
to global pointer

  What about conditional branches?

  PC-relative addressing preserved even if code moves

j/jal" xxxxx"

lw/sw" $gp" $x" address"

beq/bne" $rs" $rt" address"

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (12) Garcia, Spring 2010 © UCB

Resolving References (1/2)
  Linker assumes first word of first text segment is

at address 0x00000000.
  (More later when we study “virtual memory”)

  Linker knows:
  length of each text and data segment
  ordering of text and data segments

  Linker calculates:
  absolute address of each label to be jumped to

(internal or external) and each piece of data being
referenced

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (13) Garcia, Spring 2010 © UCB

Resolving References (2/2)
  To resolve references:

  search for reference (data or label) in all “user”
symbol tables

  if not found, search library files
(for example, for printf)

  once absolute address is determined, fill in the
machine code appropriately

  Output of linker: executable file containing text
and data (plus header)

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (14) Garcia, Spring 2010 © UCB

Static vs Dynamically linked libraries
  What we’ve described is the traditional way:

statically-linked approach
  The library is now part of the executable, so if the

library updates, we don’t get the fix (have to
recompile if we have source)

  It includes the entire library even if not all of it will be
used.

  Executable is self-contained.

  An alternative is dynamically linked libraries
(DLL), common on Windows & UNIX platforms

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (15) Garcia, Spring 2010 © UCB

Dynamically linked libraries
  Space/time issues

  + Storing a program requires less disk space
  + Sending a program requires less time
  + Executing two programs requires less memory (if

they share a library)
  – At runtime, there’s time overhead to do link

  Upgrades
  + Replacing one file (libXYZ.so) upgrades every

program that uses library “XYZ”
  – Having the executable isn’t enough anymore

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and operating system.
However, it provides many benefits that often outweigh these.

en.wikipedia.org/wiki/Dynamic_linking

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (16) Garcia, Spring 2010 © UCB

Dynamically linked libraries
  The prevailing approach to dynamic linking uses

machine code as the “lowest common
denominator”
  The linker does not use information about how the

program or library was compiled (i.e., what compiler
or language)

  This can be described as “linking at the machine
code level”

  This isn’t the only way to do it...

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (17) Garcia, Spring 2010 © UCB

Administrivia…Midterm on Monday!
  Review Sat @ Time/location TBA
  Exam Mon @ 7-10pm in 1 Pimentel
  Covers labs, hw, proj, lec, book through today
  Bring…

  NO cells, calculators, pagers, PDAs
  2 writing implements (we’ll provide write-in exam

booklets) – pencils ok!
  Your green sheet (make sure to correct green sheet

bugs)

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (18) Garcia, Spring 2010 © UCB

Week # Mon Wed Thu Lab Fri
#7

This week

MIPS Inst
Format III

Running
Program I

Running
Program

Running
Program II

#8

Next week

SDS I

Midterm
7-10pm

1 Pimentel

SDS II
(TA)

SDS SDS III
 (TA)

#9

 Next next week

Students
Explain

Midterm!

SDS IV SDS CPU I
(no class,

see webcast)

 Next3 week Spring Break!

Upcoming Calendar

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (19) Garcia, Spring 2010 © UCB

Where Are We Now?

CS164

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (20) Garcia, Spring 2010 © UCB

Loader (1/3)
  Input: Executable Code

(e.g., a.out for MIPS)
  Output: (program is run)
  Executable files are stored on disk.
  When one is run, loader’s job is to load it into

memory and start it running.
  In reality, loader is the operating system (OS)

  loading is one of the OS tasks

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (21) Garcia, Spring 2010 © UCB

Loader (2/3)
  So what does a loader do?

  Reads executable file’s header to determine size of
text and data segments

  Creates new address space for program large
enough to hold text and data segments, along with
a stack segment

  Copies instructions and data from executable file
into the new address space

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (22) Garcia, Spring 2010 © UCB

Loader (3/3)
  Copies arguments passed to the program onto

the stack
  Initializes machine registers

  Most registers cleared, but stack pointer assigned
address of 1st free stack location

  Jumps to start-up routine that copies program’s
arguments from stack to registers & sets the PC
  If main routine returns, start-up routine terminates

program with the exit system call

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (25) Garcia, Spring 2010 © UCB

Things to Remember (1/3)

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (26) Garcia, Spring 2010 © UCB

Things to Remember (2/3)
  Compiler converts a single HLL file into a single assembly

language file.
  Assembler removes pseudoinstructions, converts what it can

to machine language, and creates a checklist for the linker
(relocation table). A .s file becomes a .o file.
  Does 2 passes to resolve addresses, handling internal forward

references

  Linker combines several .o files and resolves absolute
addresses.
  Enables separate compilation, libraries that need not be compiled,

and resolves remaining addresses

  Loader loads executable into memory and begins
execution.

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (27) Garcia, Spring 2010 © UCB

Things to Remember 3/3
  Stored Program concept is very powerful. It

means that instructions sometimes act just like
data. Therefore we can use programs to
manipulate other programs!
  Compiler ⇒ Assembler ⇒ Linker (⇒ Loader)

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (29) Garcia, Spring 2010 © UCB

Big-endian and little-endian derive from Jonathan Swift's Gulliver's Travels in which the Big Endians were a
political faction that broke their eggs at the large end ("the primitive way") and rebelled against the

Lilliputian King who required his subjects (the Little Endians) to break their eggs at the small end.

Big Endian vs. Little Endian

Big Endian
  ADDR3 ADDR2 ADDR1 ADDR0

 BYTE0 BYTE1 BYTE2 BYTE3
00000001 00000100 00000000 00000000

  ADDR0 ADDR1 ADDR2 ADDR3
 BYTE3 BYTE2 BYTE1 BYTE0
00000000 00000000 00000100 00000001

Little Endian
  ADDR3 ADDR2 ADDR1 ADDR0

 BYTE3 BYTE2 BYTE1 BYTE0
00000000 00000000 00000100 00000001

  ADDR0 ADDR1 ADDR2 ADDR3
 BYTE0 BYTE1 BYTE2 BYTE3
00000001 00000100 00000000 00000000

Consider the number 1025 as we normally write it:
BYTE3 BYTE2 BYTE1 BYTE0

00000000 00000000 00000100 00000001

www.webopedia.com/TERM/b/big_endian.html
searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211659,00.html

www.noveltheory.com/TechPapers/endian.asp
en.wikipedia.org/wiki/Big_endian

•  The order in which BYTES are stored in memory
•  Bits always stored as usual. (E.g., 0xC2=0b 1100 0010)

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (30) Garcia, Spring 2010 © UCB

#include <stdio.h>

int main (int argc, char *argv[]) {

 int i, sum = 0;

 for (i = 0; i <= 100; i++)
 sum = sum + i * i;

 printf ("The sum of sq from 0 .. 100 is
%d\n", sum);

}

C Program Source Code: prog.c

“printf” lives in “libc”

Example: C ⇒ Asm ⇒ Obj ⇒ Exe ⇒ Run

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (31) Garcia, Spring 2010 © UCB

 .text
 .align 2
 .globl main
main:
 subu $sp,$sp,32
 sw $ra, 20($sp)
 sd $a0, 32($sp)
 sw $0, 24($sp)
 sw $0, 28($sp)
loop:
 lw $t6, 28($sp)
 mul $t7, $t6,$t6
 lw $t8, 24($sp)
 addu $t9,$t8,$t7
 sw $t9, 24($sp)

 addu $t0, $t6, 1
 sw $t0, 28($sp)
 ble $t0,100, loop
 la $a0, str
 lw $a1, 24($sp)
 jal printf
 move $v0, $0
 lw $ra, 20($sp)
 addiu $sp,$sp,32
 jr $ra
 .data
 .align 0
str:
 .asciiz "The sum
of sq from 0 ..
100 is %d\n"

Where are"
7 pseudo- 
instructions?"

Compilation: MAL

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (32) Garcia, Spring 2010 © UCB

 .text
 .align 2
 .globl main
main:
 subu $sp,$sp,32
 sw $ra, 20($sp)
 sd $a0, 32($sp)
 sw $0, 24($sp)
 sw $0, 28($sp)
loop:
 lw $t6, 28($sp)
 mul $t7, $t6,$t6
 lw $t8, 24($sp)
 addu $t9,$t8,$t7
 sw $t9, 24($sp)

 addu $t0, $t6, 1
 sw $t0, 28($sp)
 ble $t0,100, loop
 la $a0, str
 lw $a1, 24($sp)
 jal printf
 move $v0, $0
 lw $ra, 20($sp)
 addiu $sp,$sp,32
 jr $ra
 .data
 .align 0
str:
 .asciiz "The sum
of sq from 0 ..
100 is %d\n"

7 pseudo- 
instructions  
underlined"

Compilation: MAL

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (33) Garcia, Spring 2010 © UCB

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, loop
40 lui $4, l.str
44 ori $4,$4,r.str
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

Remove pseudoinstructions, assign addresses

Assembly step 1:

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (34) Garcia, Spring 2010 © UCB

Assembly step 2

  Symbol Table

 Label address (in module) type
 main: 0x00000000 global text
 loop: 0x00000018 local text
 str: 0x00000000 local data

  Relocation Information
 Address Instr. type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf

 Create relocation table and symbol table

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (35) Garcia, Spring 2010 © UCB

Assembly step 3

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, l.str
44 ori $4,$4,r.str
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

Resolve local PC-relative labels

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (36) Garcia, Spring 2010 © UCB

Assembly step 4
  Generate object (.o) file:

  Output binary representation for
  ext segment (instructions),
  data segment (data),
  symbol and relocation tables.

  Using dummy “placeholders” for unresolved
absolute and external references.

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (37) Garcia, Spring 2010 © UCB

Text segment in object file
0x000000 00100111101111011111111111100000
0x000004 10101111101111110000000000010100
0x000008 10101111101001000000000000100000
0x00000c 10101111101001010000000000100100
0x000010 10101111101000000000000000011000
0x000014 10101111101000000000000000011100
0x000018 10001111101011100000000000011100
0x00001c 10001111101110000000000000011000
0x000020 00000001110011100000000000011001
0x000024 00100101110010000000000000000001
0x000028 00101001000000010000000001100101
0x00002c 10101111101010000000000000011100
0x000030 00000000000000000111100000010010
0x000034 00000011000011111100100000100001
0x000038 00010100001000001111111111110111
0x00003c 10101111101110010000000000011000
0x000040 00111100000001000000000000000000
0x000044 10001111101001010000000000000000
0x000048 00001100000100000000000011101100
0x00004c 00100100000000000000000000000000
0x000050 10001111101111110000000000010100
0x000054 00100111101111010000000000100000
0x000058 00000011111000000000000000001000
0x00005c 00000000000000000001000000100001

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (38) Garcia, Spring 2010 © UCB

Link step 1: combine prog.o, libc.o

  Merge text/data segments
  Create absolute memory addresses
  Modify & merge symbol and relocation tables
  Symbol Table

  Label Address
 main: 0x00000000
 loop: 0x00000018
 str: 0x10000430
 printf: 0x000003b0 …

  Relocation Information
  Address Instr. Type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf …

CS61C L12 Introduction to MIPS : Procedures II & Logical Ops (39) Garcia, Spring 2010 © UCB

Link step 2:

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, 4096
44 ori $4,$4,1072
48 lw $5,24($29)
4c jal 812
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

• Edit Addresses in relocation table
•  (shown in TAL for clarity, but done in binary)

CS61C L19 : Running a Progam II … Compiling, Assembling, Linking, and Loading (40) Garcia, Spring 2010 © UCB

Link step 3:
  Output executable of merged modules.

  Single text (instruction) segment
  Single data segment
  Header detailing size of each segment

  NOTE:
  The preceeding example was a much simplified

version of how ELF and other standard formats
work, meant only to demonstrate the basic
principles.

